Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1297164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505746

RESUMO

Background: Syndrome of inappropriate antidiuretic(SIAD) occurs secondary to various diseases, which is characterised by hypotonic hyponatremia and impaired urinary diluting capacity. Research on SIAD in both domestic and international contexts has a long history. This study objectively and comprehensively analyses the research trends, hotspots and development of SIAD research of the past 20 years using the method of bibliometric analysis. Methods: The 2003-2022 data in the Web of Science Core Collection database were searched. The Bibliometrix software package, VOSviewer and CiteSpace were used to mine, extract and visualise the retrieved literature, and the generated maps were used in analysing the main topics and trends in the field of SIAD research. Results: A total of 1215 articles published in 623 journals were included in the analysis, with a total of 18,886 citations. Results showed that the research output on SIAD has continuously increased in the past 20 years, and the United States had the highest number of publications and citations. Keywords with the highest burst strength in recent years were the most mentioned keywords, in addition to the search terms 'hyponatremia', 'covid-19', and 'mortality'. Thus, the relationship among SIAD, covid-19 and mortality may become research frontiers and trends. Fifteen milestone articles were identified through co-citation analysis, which mainly focused on the pathophysiology and treatment of SIAD. Conclusion: Based on bibliometric analysis and knowledge mapping, this study summarises development trends in the field of SIAD research, providing references for current and future research into SIAD.


Assuntos
COVID-19 , Hiponatremia , Humanos , Bibliometria , COVID-19/epidemiologia , Bases de Dados Factuais , Conhecimento
2.
Sci Rep ; 14(1): 5268, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438492

RESUMO

There is substantial evidence demonstrating the crucial role of inflammation in oncogenesis. ANKRD1 has been identified as an anti-inflammatory factor and is related to tumor drug resistance. However, there have been no studies investigating the prognostic value and molecular function of ANKRD1 in pan-cancer. In this study, we utilized the TCGA, GTEx, GSCALite, ENCORI, CTRP, DAVID, AmiGO 2, and KEGG databases as well as R language, to explore and visualize the role of ANKRD1 in tumors. We employed the ROC curve to explore its diagnostic significance, while the Kaplan-Meier survival curve and Cox regression analysis were used to investigate its prognostic value. Additionally, we performed Pearson correlation analysis to evaluate the association between ANKRD1 expression and DNA methylation, immune cell infiltration, immune checkpoints, TMB, MSI, MMR, and GSVA. Our findings indicate that ANKRD1 expression is dysregulated in pan-cancer. The ROC curve revealed that ANKRD1 expression is highly sensitive and specific in diagnosing CHOL, LUAD, LUSC, PAAD, SKCM, and UCS (AUC > 85.0%, P < 0.001). Higher ANKRD1 expression was related to higher overall survival (OS) in LGG, but with lower OS in COAD and STAD (P < 0.001). Moreover, Cox regression and nomogram analyzes suggested that ANKRD1 is an independent factor for COAD, GBM, HNSC, and LUSC. Dysregulation of ANKRD1 expression in pan-cancer involves DNA methylation and microRNA regulation. Using the CTRP database, we discovered that ANKRD1 may influence the half-maximal inhibitory concentration (IC50) of several anti-tumor drugs. ANKRD1 expression showed significant correlations with immune cell infiltration (including cancer-associated fibroblast and M2 macrophages), immune checkpoints, TMB, MSI, and MMR. Furthermore, ANKRD1 is involved in various inflammatory and immune pathways in COAD, GBM, and LUSC, as well as cardiac functions in HNSC. In vitro experiments demonstrated that ANKRD1 promotes migration, and invasion activity, while inhibiting apoptosis in colorectal cancer cell lines (Caco2, SW480). In summary, ANKRD1 represents a potential prognostic biomarker and therapeutic target in human cancers, particularly in COAD.


Assuntos
Carcinogênese , Nomogramas , Humanos , Prognóstico , Células CACO-2 , Apoptose , Proteínas Musculares , Proteínas Nucleares/genética , Proteínas Repressoras
3.
Mol Genet Metab Rep ; 39: 101067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433930

RESUMO

Congenital disorder of glycosylation type Ia (CDG-Ia) is an autosomal recessive genetic disease caused by a mutation in the phosphomannomutase 2 (PMM2) gene. We have identified a 13-month-old boy who has been diagnosed with CDG-Ia. He displays several characteristic symptoms, including cerebellar hypoplasia, severe developmental retardation, hypothyroidism, impaired liver function, and abnormal serum ferritin levels. Through whole-exome sequencing, we discovered novel complex heterozygous mutations in the PMM2 gene, specifically the c.663C > G (p.F221L) mutation and loss of exon 2. Further analysis revealed that the enzymatic activity of the mutant PMM2 protein was significantly reduced by 44.97% (p < 0.05) compared to the wild-type protein.

4.
Front Endocrinol (Lausanne) ; 14: 1251718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116308

RESUMO

A Chinese family was identified to have two patients with rickets, an adult female and a male child (proband), both exhibiting signs related to X-linked hypophosphatemic rickets (XLH). Gene sequencing analysis revealed a deletion of adenine at position 1985 (c.1985delA) in the PHEX-encoding gene. To investigate the relationship between this mutation and the pathogenicity of XLH, as well as analyze the effects of different dosages of PHEX gene mutations on clinical phenotypes, we developed a rat model carrying the PHEX deletion mutation. The CRISPR/Cas9 gene editing technology was employed to construct the rat model with the PHEX gene mutation (c.1985delA). Through reproductive procedures, five genotypes of rats were obtained: female wild type (X/X), female heterozygous (-/X), female homozygous wild type (-/-), male wild type (X/Y), and male hemizygous (-/Y). The rats with different genotypes underwent analysis of growth, serum biochemical parameters, and bone microstructure. The results demonstrated the successful generation of a stable rat model inheriting the PHEX gene mutation. Compared to the wild-type rats, the mutant rats displayed delayed growth, shorter femurs, and significantly reduced bone mass. Among the female rats, the homozygous individuals exhibited the smallest body size, decreased bone mass, shortest femur length, and severe deformities. Moreover, the mutant rats showed significantly lower blood phosphorus concentration, elevated levels of FGF23 and alkaline phosphatase, and increased expression of phosphorus regulators. In conclusion, the XLH rat model with the PHEX gene mutation dosage demonstrated its impact on growth and development, serum biochemical parameters, and femoral morphology.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Animais , Feminino , Masculino , Ratos , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Genótipo , Mutação , Linhagem , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fósforo
5.
Mol Med Rep ; 21(6): 2367-2374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236575

RESUMO

It is commonly known that the specific function of a given ATPase associated with diverse cellular activities protein (i.e., a member of the AAA superfamily of proteins) depends primarily on its subcellular location. The microtubule­severing protein fidgetin (Fign) possesses a nuclear localization signal (NLS) that facilitates its translocation to the nucleus, where its assembly is finalized; here, Fign contributes to the regulation of microtubule configuration by cutting and trimming microtubule polymers. In the present study, Fign was found to be a nuclear protein, whose N­terminal sequence (SSLKRKAFYM; residues 314­323) acts as an NLS. Following substitution (KR to NN; 317­318) or deletion (NT; 314­323) mutations within the NLS, Fign, which is predominantly expressed in the nucleus, was found to reside in the cytoplasm of transfected cells. Furthermore, Fign was found to have an essential role in microtubule severing by preferentially targeting highly­tyrosinated microtubules (tyr­MTs). Mutation of the Fign NLS did not affect its microtubule­severing function or the cleavage of tyr­MTs, but did affect the cellular distribution of the Fign protein itself. Taken altogether, an NLS for Fign was identified, and it was demonstrated that the basic amino acids K317 and R318 are necessary for regulating its entry into the nucleus, whereas an increase in Fign in the cytosol due to mutations of the NLS did not affect its cleavage function.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sinais de Localização Nuclear/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Sinais de Localização Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Deleção de Sequência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...